Mathematical Modeling of SISO based Timoshenko Structures – A Case Study

نویسنده

  • Bijnan Bandyopadhyay
چکیده

This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in smart systems is presented. The algorithm uses a fast output sampling based sliding mode control strategy that would avoid the use of switching in the control input and hence avoids chattering. This method does not need the measurement of the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement. Keywords—Smart structure, Timoshenko beam theory, Discrete sliding mode control, Bartoszewicz law, Finite Element Method, State space model, Vibration control, Mathematical model, SISO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system’s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timosh...

متن کامل

Simulation of Simplified Computational Model of Jacket Structure with Timoshenko Cantilever Beam and Experimental Signature

Today many complex models, typically finite element models, have been employed in the analysis of jacket offshore structures. However, these comprehensive models are not readily adopted in engineering practice, especially during the preliminary design stage. As the dynamic analysis of jacket platforms is very complicated, it will be very advantageous to make a simplified computational method to...

متن کامل

Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezo...

متن کامل

T.C. MANJUNATH and B. BANDYOPADHYAY : SMART CONTROL OF CANTILEVER STRUCTURES

This paper features the modelling and design of a type of multirate output feedback based controller (Fast Output Sampling Feedback FOS) to control the flexural vibrations of a smart flexible Timoshenko cantilever beam for a Single Input Single Output (SISO) case by retaining the first 2 dominant vibratory modes. Piezoelectric patches are bonded as sensor / actuator to the master structure at d...

متن کامل

Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation

In this paper we develop a mathematical model for the dynamics of a nonlinear Timoshenko beam with piezoelectric actuation. This model can then be used to design controllers with the goal of achieving a desired shape of the beam. The control scheme can be used for several applications, e.g., vibration control in structures or shape control for high-precision structures like inflatable space ref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012